skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Malensek, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Blikstein, P.; Van Aalst, J.; Kizito, R.; Brennan, K. (Ed.)
  2. null (Ed.)
    Voluminous time-series data streams produced in continuous sensing environments impose challenges pertaining to ingestion, storage, and analytics. In this study, we present a holistic approach based on data sketching to address these issues. We propose a hyper-sketching algorithm that combines discretization and frequency-based sketching to produce compact representations of the multi-feature, time-series data streams. We generate an ensemble of data sketches to make effective use of capabilities at the resource-constrained edge devices, the links over which data are transmitted, and the server pool where this data must be stored. The data sketches can be queried to construct datasets that are amenable to processing using popular analytical engines. We include several performance benchmarks using real-world data from different domains to profile the suitability of our design decisions. The proposed methodology can achieve up to ∼ 13 × and ∼ 2, 207 × reduction in data transfer and energy consumption at edge devices. We observe up to a ∼ 50% improvement in analytical job completion times in addition to the significant improvements in disk and network I/O. 
    more » « less
  3. null (Ed.)